Till or glacial till is unsorted glacial sediment. Glacial drift is a general term for the coarsely graded and extremely heterogeneous sediments of glacial origin. Glacial till is that part of glacial drift which was deposited directly by the glacier. Its content may vary from clays to mixtures of clay, sand, gravel and boulders. This material is mostly derived from the subglacial erosion and entrainment by the moving ice of the glaciers of previously available unconsolidated sediments. Bedrock can also be eroded through the action of glacial plucking and abrasion and the resulting clasts of various sizes will be incorporated to the glacier's bed. Eventually, the sedimentary assemblage forming this bed will be abandoned some distance down-ice from its various sources. This is the process of glacial till deposition. When this deposition occurs at the base of the moving ice of a glacier, the sediment is called lodgement till. Rarely, eroded unconsolidated sediments can be preserved in the till along with their original sedimentary structures. More commonly, these sediments lose their original structure through the mixture processes associated to the subglacial transport and they solely contribute to form the more or less uniform matrix of the till.
Till is deposited at the terminal moraine, along the lateral and medial moraines and in the ground moraine of a glacier. As a glacier melts, especially a continental glacier, large amounts of till are washed away and deposited as outwash in sandurs by the rivers flowing from the glacier and as varves in any proglacial lakes which may form. Till may contain detectable concentrations of gems or other valuable ore minerals picked up by the glacier during its advance, for example the diamonds found in the American states of Wisconsin, Indiana, and in Canada. Prospectors use trace minerals in tills as clues to follow the glacier upstream to find kimberlite diamond deposits and other types of ore deposits.
Contents |
In cases where till has been indurated or lithified by subsequent burial into solid rock, it is known as the sedimentary rock tillite. Matching beds of ancient tillites on opposite sides of the south Atlantic Ocean provided early evidence for continental drift. The same tillites also provide some support to the Precambrian Snowball Earth glaciation event hypothesis.
There are various types of classifying tills:
Traditionally (e.g. Dreimanis, 1988[1]) a further set of divisions has been made to primary deposits, based upon the method of deposition.
Van der Meer et al. 2003[2] have suggested that these till classifications are outdated and should instead be replaced with only one classification, that of deformation till. The reasons behind this are largely down to the difficulties in accurately classifying different tills, which are often classified based on inferences of the physical setting of the till rather than till fabric or particle size analysis data.618866622149651818648746156